Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Open clusters (OCs) are groups of stars formed from the same cloud of gas and cosmic dust. They play an important role in studies of star formation and evolution and our understanding of galaxy structure and dynamics. The main objective of this work is to identify stars that belong to OCs using astrometric data from Gaia EDR3 and spectroscopic data from APOGEE DR17. Furthermore, we investigate the metallicity gradients and orbital properties of the OCs in our sample. Methods. By applying the HDBSCAN clustering algorithm to these data, we identified observed stars in our galaxy with similar dynamics, chemical compositions, and ages. The orbits of the OCs were also calculated using the GravPot16 code. Results. We find 1987 stars that tentatively belong to 49 OCs; 941 of these stars have probabilities above 80% of belonging to OCs. Our metallicity gradient presents a two-slope shape for two measures of different Galactic center distances – the projected Galactocentric distance and the guiding center radius to the Galactic center – as already reported in previous work. However, when we separate the OCs by age, we observe no significant difference in the metallicity gradient slope beyond a certain distance from the Galactic center. Our results show a shallower gradient for clusters younger than 2 Gyr than those older than 2 Gyr. All our OCs dynamically assemble the disk-like population very well, and they are in prograde orbits, which is typical for disk-like populations. Some OCs resonate with the Galactic bar at the Lagrange points L4 and L5.more » « lessFree, publicly-accessible full text available September 1, 2026
-
Context. We have previously studied several elements in 58 selected bulge spheroid stars, based on spectral lines in theHband. We now derive the abundances of the less studied elements phosphorus (P; Z=15), sulphur (S; Z=16), and potassium (K; Z=19). Aims. The abundances of P, S, and K in 58 bulge spheroid stars are compared both with the results of a previous analysis of the data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE), and with a few available studies of these elements. Methods. We derived the individual abundances through spectral synthesis, using the stellar physical parameters available for our sample from the DR17 release of the APOGEE project. We provide recommendations for the best lines to be used for the studied elements among those in theH-band. We also compare the present results, together with literature data, with chemical-evolution models. Finally, the neutrino-process was taken into account for the suitable fit to the odd-Z elements P and K. Results. We confirm that theH-band has useful lines for the derivation of the elements P, S, and K in moderately metal-poor stars. The abundances, plotted together with literature results from high-resolution spectroscopy, indicate that moderately enhanced phosphorus stars are found, reminiscent of results obtained for thick disc and halo stars of metallicity [Fe/H]≈−1.0. Therefore, for the first time, we identify that this effect occurs in the old stars from the bulge spheroid. Sulphur is anα-element and behaves as such. Potassium and sulphur both exhibit some star-to-star scatter, but fit within the expectations of chemical evolution models.more » « lessFree, publicly-accessible full text available August 1, 2026
-
Context.Stars presently identified in the bulge spheroid are probably very old, and their abundances can be interpreted as due to the fast chemical enrichment of the early Galactic bulge. The abundances of the iron-peak elements are important tracers of nucleosynthesis processes, in particular oxygen burning, silicon burning, the weaks-process, andα-rich freeze-out. Aims.The aim of this work is to derive the abundances of V, Cr, Mn, Co, Ni, and Cu in 58 bulge spheroid stars and to compare them with the results of a previous analysis of data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE). Methods.We selected the best lines for V, Cr, Mn, Co, Ni, and Cu located within theH-band of the spectrum, identifying the most suitable ones for abundance determination, and discarding severe blends. Using the stellar physical parameters available for our sample from the DR17 release of the APOGEE project, we derived the individual abundances through spectrum synthesis. We then complemented these measurements with similar results from different bulge field and globular cluster stars, in order to define the trends of the individual elements and compare with the results of chemical-evolution models. Results.We verify that theH-band has useful lines for the derivation of the elements V, Cr, Mn, Co, Ni, and Cu in moderately metalpoor stars. The abundances, plotted together with others from high-resolution spectroscopy of bulge stars, indicate that: V, Cr, and Ni vary in lockstep with Fe; Co tends to vary in lockstep with Fe, but could be showing a slight decrease with decreasing metallicity; and Mn and Cu decrease with decreasing metallicity. These behaviours are well reproduced by chemical-evolution models that adopt literature yields, except for Cu, which appears to drop faster than the models predict for [Fe/H]<−0.8. Finally, abundance indicators combined with kinematical and dynamical criteria appear to show that our 58 sample stars are likely to have originated in situ.more » « less
-
We present new fluorine abundance measurements for a sample of carbon-rich asymptotic giant branch (AGB) stars and two other metal-poor evolved stars of Ba/CH types. The abundances are derived from IR, K -band, high-resolution spectra obtained using GEMINI-S/Phoenix and TNG/Giano-b. Our sample includes an extragalactic AGB carbon star belonging to the Sagittarius dSph galaxy. The metallicity of our stars ranges from [Fe/H] = 0.0 down to − 1.4 dex. The new measurements, together with those previously derived in similar stars, show that normal (N-type) and SC-type AGB carbon stars of near solar metallicity present similar F enhancements, discarding previous hints that suggested that SC-type stars have larger enhancements. These mild F enhancements are compatible with current chemical-evolution models pointing out that AGB stars, although relevant, are not the main sources of this element in the solar neighbourhood. Larger [F/Fe] ratios are found for lower-metallicity stars. This is confirmed by theory. We highlight a tight relation between the [F/⟨s⟩] ratio and the average s-element enhancement [⟨s⟩/Fe] for stars with [Fe/H] > −0.5, which can be explained by the current state-of-the-art low-mass AGB models assuming an extended 13 C pocket. For stars with [Fe/H] < −0.5, discrepancies between observations and model predictions still exist. We conclude that the mechanism of F production in AGB stars needs further scrutiny and that simultaneous F and s-element measurements in a larger number of metal-poor AGB stars are needed to better constrain the models.more » « less
-
Abstract The APOGEE Open Cluster Chemical Abundances and Mapping survey is used to probe the chemical evolution of the s-process element cerium in the Galactic disk. Cerium abundances were derived from measurements of Ce ii lines in the APOGEE spectra using the Brussels Automatic Code for Characterizing High Accuracy Spectra in 218 stars belonging to 42 open clusters. Our results indicate that, in general, for ages < 4 Gyr, younger open clusters have higher [Ce/Fe] and [Ce/ α -element] ratios than older clusters. In addition, metallicity segregates open clusters in the [Ce/X]–age plane (where X can be H, Fe, or the α -elements O, Mg, Si, or Ca). These metallicity-dependent relations result in [Ce/Fe] and [Ce/ α ] ratios with ages that are not universal clocks. Radial gradients of [Ce/H] and [Ce/Fe] ratios in open clusters, binned by age, were derived for the first time, with d [Ce/H]/ d R GC being negative, while d [Ce/Fe]/ d R GC is positive. [Ce/H] and [Ce/Fe] gradients are approximately constant over time, with the [Ce/Fe] gradient becoming slightly steeper, changing by ∼+0.009 dex kpc −1 Gyr −1 . Both the [Ce/H] and [Ce/Fe] gradients are shifted to lower values of [Ce/H] and [Ce/Fe] for older open clusters. The chemical pattern of Ce in open clusters across the Galactic disk is discussed within the context of s-process yields from asymptotic giant branch (AGB) stars, gigayear time delays in Ce enrichment of the interstellar medium, and the strong dependence of Ce nucleosynthesis on the metallicity of its AGB stellar sources.more » « less
An official website of the United States government
